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Formation of turbulent patterns near the onset
of transition in plane Couette flow
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The formation of turbulent patterns in plane Couette flow is investigated near the
onset of transition, using numerical simulation in a very large domain of size 800h ×
2 h × 356 h. Based on a maximum observation time of 20 000 inertial units, the
threshold for the appearance of sustained turbulent motion is Rec = 324 ± 1. For
Rec <Re � 380, turbulent-banded patterns form, irrespective of whether the initial
perturbation is a noise or localized disturbance. Measurements of the turbulent
fraction versus Re show evidence for a discontinuous phase transition scenario where
turbulent spots play the role of the nuclei. Using a smaller computational box, the
angle selection of the turbulent bands in the early stages of their development is
shown to be related to the amplitude of the initial perturbation.

1. Problem description
Plane Couette flow (pCf), the flow between two parallel walls moving in opposite

directions, is the simplest canonical example of the effect of shear on a viscous fluid.
The only non-dimensional parameter ruling the flow is the Reynolds number, here
defined as Re = Uh/ν, where ±U is the velocity of the two walls, h is the half-gap
between them and ν is the kinematic viscosity of the fluid. We are interested in
the way sustained turbulence appears in this system around the onset of transition.
Now pCf does not belong to the class of fluid systems undergoing transition through
successive losses of stability of the base flow (as, for example, Rayleigh–Bénard
convection). The laminar base flow is linearly stable for all values of Re (Romanov
1973), hence transition is subcritical and is necessarily due to a finite-amplitude
instability of the base flow (see for instance Schmid & Henningson 2001). Experimental
investigation in a large set-up (Bottin & Chaté 1998) has shown the existence of a
critical value Re = Rec = 323 ± 2, below which turbulence can be sustained over large
observation times without relaminarization. The likelihood of a given disturbance to
suddenly decay depends on the exact shape of the initial condition itself as well as its
amplitude, hence the value of Rec is defined only statistically. Importantly, the flow
during transition shows clear signs of spatio-temporal intermittency. Experiments
focusing on the ability of localized disturbances to trigger the whole flow to become
turbulent yield values of Rec from 320 to 370, corresponding to the development
of a turbulent ‘spot’ (Daviaud, Hegseth & Berg 1992; Tillmark & Alfredsson 1992;
Dauchot & Daviaud 1995; Hegseth 1996). Later experiments by the Saclay team
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in an even larger domain lead to a more accurate regime diagram parametrized
by Re (Prigent et al. 2002; Prigent 2003). By adiabatically reducing Re from a
fully turbulent field they identified a stable turbulent regime with an alternance of
turbulent and laminar regions, forming for 325 <Re < 413 a regular or sometimes
fragmented pattern, oblique with respect to the direction of motion of the walls.
This regime seems analogous to the ‘spiral turbulence’ observed experimentally in the
flow between two concentric counter-rotating cylinders (Coles 1965; Van Atta 1966;
Colovas & Andereck 1997; Prigent et al. 2002). In order to study the formation of
these large-scale patterns, we chose to perform direct numerical simulations (DNS) of
pCf in a periodic domain which is unusually large in the two in-plane directions. Let
Lz be the spanwise extent of the numerical domain. In terms of order of magnitude,
Lz ∼ O(5 h) captures the local dynamics of a pair of streaks and the self-sustaining
process responsible for the maintenance of a turbulent flow (Hamilton, Kim & Waleffe
1995). Lz ∼ O(20 h) allows one to simulate the collective dynamics of neighbouring
streaks (Komminaho, Lundbladh & Johansson 1991). For Lz ∼ O(40–100 h), localized
turbulence and laminar-turbulent interfaces appear, capturing the initial stage of the
growth of turbulent spots (Lundbladh & Johansson 1991) and the structure of a
single turbulent band (Barkley & Tuckerman 2005). The collective behaviour of
spots, as well as the pattern formation resulting from their interaction, requires the
whole domain to be at least one order of magnitude larger. In the framework of
spatio-temporal intermittency, Pomeau (1986) used an analogy with thermodynamic
phase transition and suggested that the formation of turbulent patterns corresponds
to the competition between a laminar and a turbulent phase. Extending the size of
the domain to study the phase transition thus corresponds to an extra step towards
the ‘thermodynamic limit’ (Manneville 2009).

We present here numerical experiments in a periodic domain of size (Lx, Lz) =
(800 h, 356 h). For the sake of comparison, the set-up used by Prigent (2003) and
Bottin et al. (1998a), respectively, have size (770h, 340 h) and (380h, 70 h). We use a
spectral code to advance the incompressible Navier–Stokes equations in time, where
the velocity field is expanded in a basis of Fourier modes (in the x- and z-directions)
and Chebyshev polynomials (in the wall-normal direction y) (Chevalier et al. 2007).
The boundary conditions are periodicity in x and z and no-slip at the walls (y = ±h).
The numerical resolution is 2048 spectral modes in x, 33 in y and 1024 in z. Since
the wall-parallel directions are de-aliased using the 3/2 rule, the actual number of
collocation points in physical space is increased by a factor of 1.5. The adequacy of
the present resolution was checked by considering a smaller domain and comparing
results obtained with two additional resolutions using half and twice the number of
grid points in each direction. The results show that the present resolution accurately
captures the localization of the turbulent patterns and statistical measures such as
turbulent energies. However, we also note that in order to study other aspects of the
flow, e.g. steady states or periodic solutions, a higher resolution might be necessary.
Each simulation was run on up to 256 parallel processors using MPI techniques and
corresponds to roughly one year of CPU time (on a single processor) each.

2. Description of the transition process
We first investigate transition to turbulence when the initial velocity field is spatially

non-localized uncorrelated noise, independent of Re. The large size of the domain
allows, to a first approximation, to replace costly ensemble averages by spatial
averages. Because of the subcritical nature of the process, the amplitude of the initial
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Figure 1. Wall normal velocity vrms integrated over the whole domain, as a function of time
for values of Re in the range 300–370, with increments of 10. All simulations up to Re = 323
eventually relaminarize, which corresponds to vanishing vrms for large time t < tmax .

perturbation is chosen sufficiently large to trigger transition to turbulence as soon as
Re >Rec. Simulations were carried out for values of Re between Re = 300 and 420
with increments of 10 (refined around Rec). The nature of the asymptotic regime can
be deduced directly from the time evolution of space-averaged vrms fluctuations, where
v is the wall-normal velocity in the flow (see figure 1). The maximum observation time
is tmax =20 000(h/U ). For Re � 323, the flow eventually returns to the laminar state
(vrms =0). For Re � 330, the vrms fluctuations reach a plateau, indicating sustained
turbulent motion. The threshold for transition associated to this value of tmax is
found to be Rec =324 ± 1, in excellent agreement with threshold values in the largest
experimental set-ups (Dauchot & Daviaud 1995; Bottin et al. 1998a; Prigent 2003).

We begin by describing the transient dynamics observed in the case 300 � Re � 323.
The initial noise dissipates quickly, giving rise after 30(h/U ) to decaying streamwise
streaks of spanwise wavelength O(3–4h) (Bottin et al. 1998b). Localized zones of
spatial disorder and higher intensity, i.e. turbulent ‘spots’, appear at random locations.
The instantaneous nucleation of these spots results from the local competition between
the viscous decay of streaks – on a time-scale of O(Re) – and their instability,
induced by the residual noise and leading to their breakdown. The number of spots
nucleating from our initial condition increases smoothly with Re. As time evolves,
these localized structures take an ellipse-like shape, encircling an active zone of streaks
of larger amplitude. For Re � 323, each of those turbulent spots has a finite lifetime,
so that the whole flow eventually returns to a global laminar state once each spot has
decayed. In our numerical experiments, the mean lifetime of transient spots clearly
increases with Re, consistently with statistical analysis (Bottin & Chaté 1998). For
Re =320 and Re = 323, the lifetime of some of the spots is long enough to display
a complex dynamics: spots sometimes split in two, decay partially or drift slowly in
unpredictable directions.

The early stages of the numerical experiments for Re � 325 are identical to the
Re =320 case up to t =400(h/U ). However, while some of the spots at Re = 325
are still observed to decay, the strongest survive and unambiguously grow in size. A
striking feature of the spot expansion is their oblique growth. For 330 � Re � 350, all
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Figure 2. Development of a turbulent pattern at Re = 330 starting from a noisy initial
condition. Streamwise velocity field in the mid-plane y = 0 at time t = 200, 1865 and
20 000 (h/U ).

the spots reaching the nucleation stage are observed to grow obliquely, following a
clear sequence noise → streaks → spot nucleation → stripes (see figure 2). When two
neighbouring growing spots approach each other, they merge to produce one single
stripe. Both positive and negative values of β coexist, where β is the angle of a band
with respect to the streamwise direction x. Turbulent bands with various angles can
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coexist, thus the angle β is not uniquely defined and is distributed with a spread
of ±10◦. However, the median value of β is seen to decrease monotonically with
increasing Re, in agreement with Prigent’s observations (2003). It is close to 36◦ ± 10◦

for Re =325 and it approaches smoothly the angle of the diagonal of the computation
domain (24◦) for Re � 350. From Re = 330 to Re = 380, a complex pattern, consisting
of alternating laminar and turbulent bands, eventually fills up the whole numerical
domain. Note that when Re approaches Rec from above (e.g. Re = 325), the time
needed for stripes to invade the whole domain diverges because the propagation
velocity of the fronts vanishes. For Re � 330, statistically steady patterns are usually
reached after a time of O(1000 h/U ). They invariably consist of fragmented turbulent
stripes. However, the pattern still evolves on a slower time-scale, due to the slow
propagation of topological defects, even if the level of the vrms fluctuations stays
statistically steady. Depending on the value of Re, various spatial arrangements of
the stripes are observed, despite a similar initial condition. Perfectly aligned patterns,
where all stripes are parallel to each other, such as those observed in pCf and Taylor–
Couette experiments (Prigent 2003) and modelled by Barkley & Tuckerman (2005),
are not observed here when starting from random noise. For a same value of Re,
various wavelengths between 50 h and 100 h can coexist inside an equilibrium pattern
(see figure 2c). Visualization of the cross-sectional flow (not shown) shows that the
pattern is essentially two-dimensional, with a shear-induced distortion in the xy-plane.
Animations of the cases Re = 320 and Re = 350 are available online.

Above Re =360, the spatial density of nucleating spots becomes so large that
individual spots can hardly be distinguished one from another, and the whole domain
becomes quickly entirely turbulent. For Re up to 420, laminar regions can still be
observed by eye in the xz-plane. These laminar zones emerge spontaneously and
transiently out of the turbulent flow (whereas for Re � 350, the turbulent fluctuations
progressively invade the laminar domain). Turbulent stripes still emerge eventually,
but are less and less well-defined as Re is increased, making the Re-evolution of the
angle β difficult to track. As Re is increased up to 420, laminar sub-domains are
observed to shrink in size and lose their oblique orientation. At Re =400 and 420,
individual holes – of the width of one to two streaks – survive only transiently. This is
to conform to the suggestion of an unsteady contamination process of local laminar
domains by the turbulent surroundings, discussed in various models for shear flows
(Manneville 2005; Lagha & Manneville 2007; Manneville 2009). The typical width of
a pair of streaks, of O(3 h), is the smallest spatial scale above which it is still possible
to distinguish between turbulent and laminar dynamics. This makes the identification
of an upper threshold for uniform turbulence ambiguous.

Post-processing of the velocity field was done in order to accurately measure the
turbulent fraction FT as a function of Re when a steady regime is reached. FT is
defined as the area filled with turbulent motion, normalized by the area LxLz of the
whole domain. We base the determination of FT on the fraction of the domain having
a turbulent production above a certain threshold. Because laminar-turbulent patterns
are only weakly dependent on the direction y, the turbulent production is evaluated
in the mid-plane y = 0 only. The value of FT at equilibrium is found after repeated
applications of a median filter. It is shown in figure 3. For the sake of comparison, the
turbulent fraction corresponding to all the transient spots near their nucleation time
is also indicated in figure 3. Only the values of Re � 330, for which FT has reached a
statistically steady plateau at t = tmax , are shown in figure 3. For instance, FT (Re = 325)
is believed not to have converged to a statistically steady value yet at t = tmax (we
have FT (t = tmax ) = 0.214), hence it is not shown in figure 3. On the contrary, the
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Figure 3. Turbulent fraction FT as a function of Re. The dotted line corresponds to the value
at equilibrium. The solid line corresponds to the turbulent fraction of the spots at nucleation
time.

time-dependent quantity FT (Re = 330) varies by less than 2.5 % around its mean
value 0.38 over a time interval of 104 (h/U ), which suggests that FT (Re =330) = 0.38
is a converged value. There is, hence, a steep rise of FT between Re = 323 and Re = 325,
associated to the formation of sustained turbulent structures of finite spatial extent. FT

evolves smoothly towards unity as Re approaches 420, and there is no sharp threshold
for the transition from a banded to a ‘uniform’ regime. Figure 3 can be interpreted
as a bifurcation diagram for turbulent pCf. It is similar to that by Bottin et al.
(1998b), however the existence of banded patterns is here clearly identified, and the
singularity near Rec is a sharp one. The analogy between this transition mechanism
and thermodynamic phase transition is straightforward if FT is interpreted as an order
parameter and Re is associated to the temperature of the system. The results above
clearly support a discontinuous (first-order) phase transition near Rec ∼ 324 and a
continuous (second-order) transition to uniform turbulence around Re = 400. Even if
discontinuity of FT near Rec occurs in principle only at the thermodynamic limit, the
rounding-off is expected to scale like L−2 and thus to be weaker for larger and larger
domains (Imry 1980). This singularity is linked to the nucleation of growing turbulent
spots and corresponds to the minimal width of the resulting turbulent stripes. The
slow increase in FT with Re illustrates a weakening of the anisotropic mechanisms
limiting the propagation of the laminar/turbulent interfaces. The analogy with first-
order phase transition also implies a finite correlation length (Binder 1987) between
nucleating spots, which we can estimate to be of the order of the wavelength of the
turbulent stripes.

3. Localised disturbances
Given the role of growing turbulent spots in the formation of banded patterns and

the finite correlation distance mentioned above, we investigate now the dynamics of
a single localized disturbance free from any mutual interaction. We focus here on the
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Figure 4. Development of a turbulent spot at Re = 350, starting from a localized disturbance.
Streamwise velocity field in the mid-plane y = 0 at time t = 201, 1043 and 2102 (h/U ).
Supplementary movie available at journals.cambridge.org/flm

values of Re for which turbulent bands form, and we refer to the description by Lun-
dbladh & Johansson (1991) Tillmark & Alfredsson (1992) for larger values of Re. The
numerical domain is the same as in § 2 and we trigger spots using a localized initial con-
dition. The very large size of the domain ensures that the growing spot (at least in the
early stage of its spatial development) is not affected by the ‘neighbours’ resulting from
the periodic boundary conditions. The initial condition is similar to that used by Lund-
bladh & Johansson (1991), but without the imposed spanwise symmetry; the flow out-
side a circle of radius 10h is initially strictly laminar. The growth of a spot at Re = 350
is visualized in figure 4, using the streamwise velocity in the midplane y =0, and the
corresponding Supplementary movie is available at journals.cambridge.org/flm. The
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flow evolves quickly into a localized structure with a rhomb/ellipse shape, dominated
by streaks. It is very similar to the structure observed numerically and experimentally
by Lundbladh & Johansson (1991) and experimentally by Tillmark & Alfredsson
(1992) at Re = 375 and above. The fronts of the spot initially travel with a constant
velocity, resulting in a spatial expansion of the turbulent phase. The departure from
previous spot studies starts around t ∼ 170 h/U . The spot starts to distort and takes
an S-shape, symmetric around the origin (despite the lack of initial symmetry). The
structure later continues to grow by increasing in length, but keeping a constant width.
This dynamics evokes the formation of standing-wave labyrinths through a front in-
stability, occurring in other diffusive systems (Yochelis et al. 2002). At t > 500 h/U , the
turbulent pattern is clearly made of several adjacent bands with various orientations.
These turbulent bands, analogous to those in figure 2, have an angle β between ± 27◦

and ± 56◦. Spanwise (β = 90◦) or streamwise (β = 0◦) spreading sometimes occurs
but inevitably leads to a splitting of the new germ, followed by its instantaneous
relaminarization. This dynamics is consistent with the observation that horizontal or
vertical turbulent bands cannot be sustained in pCf (cf. figure 29 in Barkley & Tuck-
erman 2007), and justifies qualitatively the oblique nature of the resulting fronts. This
calculation demonstrates that the formation of banded patterns does not necessary
result from the merging of spots, but can occur also from a single nucleation event.

4. Angle selection
In order to study which angle is preferably selected by growing spots, we adopt a

numerical trick used by Barkley & Tuckerman (2005), where the angle of the stripe is
constrained artificially by the periodicity of the boundary conditions. A square domain
of size (Lx, Lz) = (80, 80) is considered in this section, which is discretized using 128
spectral modes in each direction. This resolution is lower than the one employed
in the previous sections, a choice made necessary by the many costly computations.
A resolution check shows that the coarse discretization causes a shift in Reynolds
number, i.e. spots generate turbulent bands, yet at a slightly lower Re than in the
fully resolved case and in experiments. Note, however, that the conclusions will be
unaffected by this shift in Re. The base flow is here tilted by an angle θ with respect
to the x-direction in the xz-plane. For instance, θ = 0◦ corresponds to x coinciding
with the physical streamwise direction. Suppose that a turbulent band forms in this
periodic domain, with an angle β with respect to the flow direction. Because of the
periodicity in the x -and z -directions, the direction of the band with respect to the
baseflow has no choice but to align with the x -direction, the z -direction or the xz -
diagonal. This leads to θ + β = 0, 45◦ or 90◦, thus the angle β must be θ , 90◦ − θ or
45◦ − θ . Our aim is to study how the critical amplitude of a given initial disturbance
varies with θ (and hence with β). The initial condition is of the same kind as in § 3.
It is tilted by θ in order to keep the same orientation with respect to the base flow as
θ is varied. The constrained geometry, as well as the coarser spectral representation
(compared to §§ 2 and 3), suggests to view this system only as an intermediate-order
model for the formation of banded patterns. The critical amplitude Ac associated to
the initial perturbation is determined by excess using a standard bisection algorithm,
within an accuracy of five digits. By construction, when a perturbation of amplitude
Ac evolves in time, it approaches the edge state of the system. This edge state appears
to be localized in both x-and z-directions (Duguet, Schlatter & Henningson 2009).
For 330 � Re � 360 the perturbation later evolves into a turbulent band (see figure 5).
Note that for θ = 0◦ or 10◦, the evolution of the fronts is strongly intermittent; no
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Figure 5. Snapshots during the formation of a turbulent band starting from the edge state,
for Re = 330. The periodic domain has size (Lx,Lz) = (80, 80) and the base flow is oriented
with an angle θ = 50◦ with respect to the x-direction. The resulting turbulent band has an
orientation of β = 40◦ with respect to the base flow. (a–d ) t = 14, 37, 67, 251 (h/U ).

turbulent band can sustain, hence no angle β can be defined. For Re between 360
and 380, no turbulent band is observed, despite the presence of laminar sub-domains.
The central result of this section is in figure 6. It shows the dependence of the
threshold amplitude Ac on the observed angle β , in case an unambiguous turbulent
band has formed. There is a clear minimum at β ∼ 40◦, apparently independent of
Re for this computational box. Assuming that the shift in Reynolds number is the
main consequence of the lower resolution, these results suggest that patterns with an
angle β ∼ 40◦ need less initial energy to be sustained. Increasing the amplitude of a
given localized perturbation further away from the threshold leads to a broader and
continuous range of angles selected by the system. Values of β � 20◦ or β � 70◦ have
not been observed, in good agreement with Barkley & Tuckerman (2007) and with
the observations in §§ 2 and 3. Extending this conclusion to larger domains suggests
that one preferred angle, close to 40◦, is more likely to emerge in the early stages of
the development of turbulent bands.

5. Conclusion
In summary, we present a bifurcation diagram of turbulent pCf, based on DNS

of the incompressible Navier–Stokes equations. The use of a large computational
domain is crucial for the determination of transition thresholds, because it allows to
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Figure 6. Normalized threshold amplitude Ac as a function of the angle β of the turbulent
band, measured by observation with respect to the base flow direction. Re = 330 and Re =350.

reproduce spatio-temporal intermittency structures such as transient spots, turbulent
bands and laminar holes. The threshold in Re is found to be Rec = 324 ± 1, in
very good agreement with available experimental data. This work points out that
fragmented oblique patterns always emerge for Rec � Re � 380 without hysteresis,
either from the interaction of growing neighbouring spots or from the self-distortion
of a single localized disturbance. The analogy with first-order thermodynamic phase
transition is confirmed by the crucial role of turbulent spots as nuclei of the turbulent
phase. The use of a smaller periodic domain shows that the pattern selection is
intrinsically subcritical. Close to the amplitude threshold, a specific angle is selected
by the system in the early stage of the growth of a turbulent band, whereas above
that threshold, the range of possible angles lies between 20◦ and 70◦.

Y. D. thanks P. Manneville for stimulating discussions. Computer time provided by
SNIC (Swedish National Infrastructure for Computing) is gratefully acknowledged.

Supplementary movies are available at journals.cambridge.org/flm.
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